Effects of Upper Limb Loss and Prosthesis Use on Standing Balance

Matthew J Major, Tara Shirvaikar, Rebecca Stine, and Steven A Gard
Northwestern University, Chicago, IL; Jesse Brown VA Medical Center, Chicago, IL; Edward Hines Jr VA Hospital, Chicago, IL
email: matthew-major@northwestern.edu, web: http://www.nupoc.northwestern.edu/

Introduction

- Whole-body internal models influence the motor behavior required for controlling posture, with arms contributing to standing balance (Imaizumi 2016, Shafeie 2012).
- Nearly half of persons with upper limb (UL) loss fall at least once per year, with fall likelihood increasing by 6 times for those who use a prosthesis (Major 2017).
- Wearing an UL prosthesis may help center the body axis while standing, but evidence suggests it may also be perceived as a postural disturbance (Imaizumi 2016).

Aim: Evaluate the acute effects of UL loss and wearing an UL prosthesis, particularly matching the mass of both upper limbs, on standing balance.

- **H1**: Presence of UL loss will cause an increase in postural sway.
- **H2**: Wearing an UL prosthesis will improve bilateral weight symmetry.
- **H3**: Wearing an UL prosthesis will cause an increase in postural sway.

Methods

Participants

11 Able-Bodied (35±14 yrs, 174.7±8.2 cm, 78.9±13.4 kg)
11 Persons with Unilateral UL Loss (8 Transradial / 3 Transhumeral, 50±18 yrs, 175.1±7.4 cm, 79.6±22.6 kg)

Protocol

- 30 Seconds × 3 Trials
- Focusing on a Target
- Force Plate-Tracker COP
- UL Loss Conditions:
 1. No Prosthesis
 2. Customary Prosthesis
 3. Mock Prosthesis

Data Analysis

- **Able-Bodied vs. Upper Limb Loss**
 - Net COP
 - AP COP Range (cm)
 - ML COP Range (cm)

- **Symmetry Index**
 \[\text{Symmetry Index} = \frac{\text{Sound, Dominant Load} - \text{Impaired, Non-Dominant Load}}{0.5 \times (\text{Sound, Dominant Load} + \text{Impaired, Non-Dominant Load})} \]

General Linear Model

Persons with UL Loss: Side x Condition x Group (Fallers, Non-Fallers)
Able-Bodied vs. UL Loss: Group
Covariates: stance width, body mass index (α=0.05)

Results

- **Able-Bodied vs. Upper Limb Loss**
 - ML COP Range (cm)
 - AP COP Range (cm)
 - COP Sway Area (cm²)

- **Symmetry Index**
 - ±Sound/Dominant Side Bias
 - ±Impaired/Non-Dominant Side Bias

- **Data Analysis**
 - COP Sway Area (cm²)

Discussion

- **H1 supported**: Persons with UL loss not wearing a prosthesis displayed greater COP sway than able-bodied controls, with no significant difference in weight symmetry.
- **H2 supported**: Wearing a prosthesis improved weight symmetry with greatest symmetry when prosthetic limb mass is matched to the sound limb.
- **H3 supported**: Wearing a prosthesis appears to cause an acute increase in COP sway, but no difference between limb side or fallers versus non-fallers.
- UL loss may increase postural demands, while wearing a prosthesis may disturb standing balance, but the link to fall risk warrants further exploration (Pizzigalli 2016).

References

Major MJ. 16th ISPO World Congress, 2017.

Acknowledgements

We thank John Brinkmann, CPO, for helping design the mock prosthesis and Suzanne McConn for data collection assistance. Work was supported in part by the NU Undergraduate Research Assistant Program and the US Dept. of VA (#1I21RX001388 and 1IK2RX001322).