Ability to Predict Perturbation Timing Does Not Impact Center-of-Mass Displacement in Below-Knee Prosthesis Users and Controls

1,2,3 Matthew J Major, 1 Chelsi K Serba, and 1,3 Keith E Gordon

1 Northwestern University, Chicago, IL; 2 Jesse Brown VA Medical Center, Chicago, IL; 3 Edward Hines Jr VA Hospital, Chicago, IL

email: matthew-major@northwestern.edu, web: http://www.nupoc.northwestern.edu/

Introduction

- Despite a high fall prevalence (Miller 2001), factors that underlie postural control in lower limb prosthesis users have not been sufficiently explored.
- Knowledge of lateral perturbation timing evokes a proactive margin-of-stability increase on prosthetic limb side of below-knee (BK) prosthesis users (Major 2018)
- The consequences of a priori knowledge and proactive strategies on body center-of-mass (CoM) motion following a perturbation have not been characterized.

Aim: Assess effects of a priori knowledge (direction, timing) of a lateral perturbation on response of able-bodied and BK prosthesis users.

- **H1**: When directed towards impaired limb, prosthesis users would display increased CoM displacement during perturbation exposure.
- **H2**: When timing is known, prosthesis users would display reduced peak CoM displacement following perturbation onset.

Methods

Participants

- 13 Able-Bodied (29±11 yrs, 65±10 kg, 1.7±0.1 m)
- 6 Unilateral BK Prosthesis Users (48±8 yrs, 70±11 kg, 1.7±0.1 m)

Cable Robot

- **Lateral Perturbation**
- **12% Body Weight**
- **400 ms Exposure**
- **Optically-Tracker CoM**

(Wu 2017, Brown 2017)

a priori Knowledge

- Direction (Right/Left)
- 5 4 3 2 1 Timing (Known/Unknown)

Data Analysis

- **Time to Reversal**
- **Peak ∆CoM**
- **Perturbation Onset**
- **Exposure ∆CoM**

3-way ANOVA Direction x Timing x Group (α=0.05)

Results

- **Prosthesis User**
- **Able-Bodied**

Exposure ∆CoM as function of Gait Cycle

- **Known Timing**
- **Unknown Timing**

Discussion

- **H1 supported**: Perturbation towards the impaired/non-dominant limb increased Exposure ∆CoM (p=0.033), with no difference between groups or timing conditions.
- **H2 supported**: Knowledge of perturbation time reduced Peak ∆CoM (p=0.010) but increased time to reversal (p=0.043), with no difference between groups or direction.
- For unknown timing, a trend towards greater Peak ∆CoM but rapid return to center, whereas known timing generates less Peak ∆CoM by delayed response (‘riding it out’)
- Emerging pattern for influence of gait cycle phase and perturbation direction, but not timing, on Exposure ∆CoM which resembles CoM velocity temporal profile.

References

Acknowledgements

This work was supported in part by the Northwestern University Clinical and Translational Sciences Institute, Northwestern University Undergraduate Research Assistant Program, and the US Dept. of Veterans Affairs (#1IK2RX001322-01A1 and #1IK2 RX000717-01).