Whole-body composition influences postural control with the arms playing a key role in the regulation of standing balance [1, 2]. Nearly half of persons with upper limb (UL) loss fall once per year [3] and prosthesis use may impose a postural disturbance [1, 3]. Understanding the effects of wearing an UL prosthesis on balance may inform intervention strategies to enhance postural control.

Purpose: Evaluate the acute effects of wearing an UL prosthesis on standing balance, particularly the impact of matching the mass of the impaired (prosthetic) limb to the sound limb.

Methods

Design: Repeated-measures study; 11 subjects with unilateral UL loss (8 transradial/3 transhumeral; 50±18yrs; 175.1±7.4cm; 79.6±22.6kg).

Experimental Protocol
Three trials of 30 seconds of quiet standing under three prosthesis conditions:
1) Without wearing a prosthesis;
2) Wearing the subject's customary prosthesis; and
3) Wearing a mock prosthesis that matched the mass of the impaired (prosthetic) limb to the sound limb.

Equipment and Data Analysis
- **Equipment:** 2 embedded force plates that collect instantaneous Center-of-Pressure (COP) location.
- **Measures:**
 - Mean COP anterior-posterior/medial-lateral (AP/ML) range, and sway area for each side (impaired, sound).
 - Sway area estimated using the Khachiyan Ellipsoid Algorithm with a tolerance of 0.001 cm.
 - Symmetry Index estimated weight distribution between sides (>0=sound side bias; <0=impaired side bias).
- **Fallers** defined as falling at least once in past 12 months.
- **Mixed ANCOVAs** performed on COP range, sway area, and Symmetry Index (side*condition*Faller/Non-Faller group).

Results

<table>
<thead>
<tr>
<th></th>
<th>AP COP Range (cm)</th>
<th>Medial-Lateral COP Range</th>
<th>COP Sway Area</th>
<th>Symmetry Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>2</td>
<td>0.3</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Customary</td>
<td>3</td>
<td>0.5</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Mock</td>
<td>4</td>
<td>0.8</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>p-value</td>
<td>0.013</td>
<td>0.028</td>
<td>0.011</td>
<td>0.008</td>
</tr>
</tbody>
</table>

Error Bars = 95% Confidence Interval; p-values correspond to between-condition analyses.

Conclusions

- Wearing an UL prosthesis may improve weight symmetry in persons with unilateral UL loss, but generally increased COP excursion.
- Increased COP excursion reflects greater sway of the whole-body center-of-mass and increased demands on postural control [4].
- No difference in COP parameters were significant (p ≥ 0.07) between subjects categorized as Fallers or Non-Fallers.
- Further research is needed to explore relationships between COP excursion and fall risk in persons with UL loss.

References

Acknowledgements

We thank John Brinkmann, CPO, for helping design the mock prosthesis and Suzanne McCnn, MSc, for assistance with data collection. Work was supported by the U.S. Dept. of Veterans Affairs (#1121RX001388 & 1IK2RX001322) and NU Undergraduate Research Assistant Program.