Current methods of taking impressions for orthotic devices include plaster bandage, fiberglass, and laser-optical scanner. This poster presents an alternative impression and fabrication technique for foot orthoses, ankle-foot orthoses, knee-ankle-foot orthoses, and thoracolumbar-sacral orthoses that utilizes the dilatancy principle (vacuum packing) initially investigated in the 1940’s by WJ Mead.

To date, the foot orthosis and the ankle-foot orthosis systems have been tested on both able-bodied subjects and subjects with impairment. The knee-ankle-foot orthosis and the thoracolumbar-sacral orthosis systems are under development.

Objective
To create a potentially better, cheaper, faster, and greener approach for cost-effective services in both developing and developed countries.

Methods
This development project consists of 3 stages:
- Pre-clinical tests using a plaster model
- Test a minimum of 3 able-bodied subjects
- Test a minimum of 3 subjects with impairment

Each stage follows these steps:
- Take impression (negative mold)
- Convert impression to positive sand model
- Measure positive sand model to confirm accuracy

On subjects, additional steps are:
- Apply reliefs to positive sand model
- Fabricate orthosis
- Fit device to subject
- Ask subject to rate comfort of
 - The impression process
 - The fabricated orthosis

Researchers evaluate and modify system based on observations and subject feedback.

References

Acknowledgements: The content covered on this poster is funded by the National Institute on Disability and Rehabilitation Research Field Initiated Grant Number H133G110266. The opinions reflected on this poster do not necessarily reflect those of the Federal Government or Department of Education. Team photo courtesy of RJ Garrick.